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A Computationally Efficient Algorithm for
Determining Regional Cerebral Blood Flow In
Heterogeneous Tissues by Positron Emission

Tomography

Kathleen Schmidt* and Louis Sokoloff

Abstract—Inclusion of brain tissues with different rates of tion mode,t is the time after injection of tracer into the blood

blood flow and metabolism within a voxel or region of interest andC;(0) = C,(0) = 0. Algorithms for determining cerebral

is an unavoidable problem with positron emission tomography blood flow are based on the solution of (1), i.e
due to its limited spatial resolution. Because regional cerebral T

blood flow (rCBF) is higher in gray matter than in white matter, T

the partial volume effect leads to underestimation of rCBF in ) _ —(F/A)(T—t)

gray matter when rCBF in the region as a whole is determined. Ci(T) = F/O Calt)e dt 2)
Furthermore, weighted-average rCBF itself is underestimated

if the kinetic model used in the analysis fails to account for the or an integration of (1), i.e.,

tissue heterogeneity. We have derived a computationally efficient

method for estimating both gray matter and weighted-average F T T

rCBF in heterogeneous tissues and validated the method in simu- Ci(T) = — <_> / Ci(t) dt + F/ C.(t)ydt.  (3)
lation studies. The method is based on a model that represents a A 0 0

heterogeneous tissue as a weighted mixture of two homogeneous

tissues. A linear least squares algorithm is used to estimate the The first method for measurement of rCBF in man with positron

model parameters. emission tomography (PET) used#D as the tracer [2], [3].
Index Terms—Brain, blood flow, least squares methods, positron The H°O method relied on a single integrated tissue measure-
emission tomography. ment acquired after a finite interval of time following admin-
istration of the tracer, and (2), integrated over the same time
|. INTRODUCTION interval, was solved fo#” with a prespecified value fok [2],

o ) 4]. With advances in scanner and computer technology that al-
ETHODS for determination of regional cerebral bloogyed rapid acquisition and storage of multiple frames of data,
flow (rCBF) with freely diffusible tracers are based Onpethods were introduced that estimatBdand A simultane-
the equation that Kety derived in his analyses of the principlggs|y from a series of measurements of tissue concentration

of inert gas exchange [1], namely [5]-[12]. Several of these methods were designed to reduce re-
construction time by using integrals [9] or weighted integrals
dC; __ <E> Cit) + FCu(t) Q) [_5]—[8], [12] of the prOJectlo_n _data, together with Ilnear_ estima-
dt A tion procedures, for determining the parameféend. Linear

methods, however, have been shown to possess small to mod-

where erate degrees of bias in the estimates [13]. Fetrg. [14] in-
C; andC, concentrations of tracer in tissue and arteridtoduced a generalized linear least squares approach to remove
blood, respectively; the bias in the estimates arising from statistical dependencies in
F rate of blood flow per unit mass of tissue, and the data.
A tissue:blood partition coefficient for the tracer It was recognized from the outset that a model designed for
and tissue in question. application in homogeneous tissues might be inaccurate when

Equation (1) assumes tissue homogeneity and diffusion equildpplied to tissues measured with PET as the limited spatial reso-
rium between blood and tissue. For methods used in the satduion of the scanner assures that most tissue measurements rep-
resent a mixture of gray and white matter. Errors due to hetero-
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approximately 20% in longer-duration studies [10]. These simhere the coefficients are given by

ulations did not take into account noise in the measurements of

tissue activity that has the potential to further degrade estimates _ <ﬂ) 4 <§) 0. — <ﬂ) <§)

of weighted-average blood flow. S\ A2 TN A2
The unavoidable inclusion of white matter in measurementg, — ., F, + woFy = F

of gray matter activity leads to a second problem. Weighted-av- P )28 [ F )28

erage flow in a gray matter region depends on the amount 8 = (w11 +w2Az2) < ) < ) =A < ) <)\—> (7)

white matter included in the region of measurement whereas 2

one would like to know the flow in the gray matter only. INynd 7 = wiFy + waFy and X = wid; + wehs represent

fact, the average gray:white rCBF ratio is often considered e weighted-average blood flow and blood:brain partition

be indicative of the severity of the partial volume effects of thcf"oefficient, respectively, in the mixed tissue. Because the four

scanner. In studies that utilized the relatively high spatial reSOI&SeﬁicientS depend on five independent parameters, namely
tion of quantitative autoradiography, the gray:white rCBF rati%b AL, s, Ao, andwy, the parameters will not be identifiable

was found to be greater than 4:1 in cortical structures in the CQhless some additional information is utilized. In the next

scious cat [,18] and conscious rgt [1,9] whereas with PET ME&ction we introduce a set of physiological constraints to render
surements in normal human brain it is at best of the order of 3l parameters identifiable

[20]. There have been a number of methods proposed to estimate

and correct for partial volume effects, most of which require uge physiological Constraints: The Blood:Brain Partition
of a high resolution magnetic resonance image of the subjetdefficient

coregistered to the PET image. It would be useful if the gray When
matter flow could be determined along with the weighted-
erage flow from the dynamic PET scans alone.

AL

A2

AL

av. 150-labeled water is used as a blood flow tracer, the
Yissue:blood partition coefficient for the tracer can be deter-
mined from the water contents in brain tissue and whole blood;
partition coefficients of 0.98 and 0.82 ml blood/g brain have thus
been assigned to gray matter and white matter, respectively [21].

Consider a tissue that is comprised of a mixture of two h@or other blood flow tracers, the blood:brain partition coeffi-

mogeneous tissues, e.g., gray and white matter. The modeld@nt can be measured in equilibrium experiments. Therefore,

distribution of a freely diffusible tracer in each tissue is as givei reduce the number of parameters to be estimated, we assume

in (1); the concentration of tracer in the two homogeneous tigrat \; and\, are known.

sues can be described by the set of equations

Il. THEORY

B. The Linear Least Squares Algorithm: Equal Partition

dCi1 Fi Coefficients in the Tissues
= — — Czl(t) + Flca(t) . . - H
dt A1 We consider first a hypothetical blood flow tracer which has
dCipp s equal blood:brain partition coefficients in all homogeneous con-
at <)\_2> Cia(t) + F2Ca(t) ™) stituents of the mixed tissue, i.6; = A\, = X, where\ is

assumed to be known. From (7) we hae= M6, and this
where constraint can be incorporated directly into (6) as

C;1 andC;»  concentrations of the tracer in Tissues 1 and
: t

2; T T ot
FiandF,  blood flow per unit mass of Tissues 1 and 2;  Ci(T) = —91/ Ci(t) dt + 6, <—/ / Ci(s)ds di
Ar and X, respective tissue:blood partition coefficients 0 070
for the tracer and tissues in question; St T
Ca concentration of tracer in the arterial blood. +A /0 /0 Cals)dsdt | + 03 /0 Ca(t) dt. (8)
The concentration of tracer in the mixed tissue is the weighted

sum of the concentrations in the homogeneous tissues Coffiis suggests the following algorithm. Given a series of mea-

prising the mixture, i.e., surements of the tissue concentration made over the intervals
[s1,t1],[s2,t2], - -, [$n, tn], fOrm the vector
CiT) = w1 Ci(T) + waCia(T)
tq to tn, Tr

wherew; andw, = 1 — w, are the relative tissue weights. ¥ = [/ Ci(t) dt / Ci(t)dt --- / Ci(t) dt}
For this single-input single-output system, an equation can be 7 72 o Q)
derived to relate’; to integrals oi; andC,, (see Appendix ). (where Tr denotes the vector transpose) and the matrix (see (10),
The resultant equation is shown at the bottom of the next page). Then

g o b=16, 6, 6,]™ = XTHX)"'XTHy (11)

Ci(T):—Hl/ Ci(t)dt—ﬁg/ / Ci(s) ds dt =60 6y 63]7 = y
0 0 JO

T ot is the weighted least squares estimate dor the weighting
T 93/0 Calt) dt + 94/0 /0 Cals)dsdt (6) matrix H. H is usually the inverse of the covariance matrix of
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the errors in the measurememts Estimates of the parametersE. Reducing the Number of Parameters: An Algorithm for Use

F, F,, F, andw,; are found by solving (7), i.e., When White Matter Flow Is Known

Cerebral blood flow in white matter has been shown to be

. A [ - - - . fairly homogeneous in conscious animals [18], [19]; this is most
== <91 +/ 01 — 492) F =03 probably true in the human brain as well. Furthermore some
A - white matter regions in the human brain, such as the corpus cal-

. Ao [ A - . 8y — b e . ) . h

=16, —1/6? — 40, W = — =. (12) losum, are sufficiently large in comparison with the spatial res-
2 B - F olution of the PET scanner that it should be possible to measure

their blood flow on the basis of a homogeneous tissue model.
This suggests the possibility of introducing a further constraint
on the system of equations in order to reduce the variance in the
estimates of gray matter flow.

Physiological constraints require that the parametersThe constraint setting the value of white matter flow to a fixed
Fi, A, Fo, )2 be positive and relative tissue weights balue implies tha#; and 6> are not longer independent, but
nonnegative. Sincevs, = 1 — wy, this further implies that related by

C. Additional Physiological Constraints

0 < w; < 1. Rather than implement directly these con- j2N jo}
straints, which are nonlinear in the coefficiedtsand would, 0y = <)\—> <91 — )\_> . (13)
therefore, introduce a considerable computational burden, we 2 2
took a somewhat pragmatic approach that assumed that Stgbstituting (13) into (8) yields
that violated these conditions were due to either insufficient
heterogeneity in the region (too small a content of either gray or )\ 2 Tt
white matter) or noise levels too high to detect physiologicall)pi(T) + <)\_2> <_/0 /0 Ci(s) dsdt
valid parameters from the heterogeneous tissue model. In these o
cases, the tissue was considered to be indistinguishable from a, 5\/ / Co(s) ds dt)
homogeneous tissue and only weighted-average flow was esti- o Jo
mated fromfs. Additionally, in order to avoid ill conditioning T I
in the estima:tewl, ti§sues for which the difference between =6, / Ci(t) dt + <_2>
the estimateg; andF, was less than 10% of their mean were 0 Az
arbitrarily classified as homogeneous. T t T gt
X <— / Ci(s) dsdt—i—)\/ / Co(s) dsdt)]
D. The Algorithm for Unequal Partition Coefficients in the TO ’ 0
Tissues + 65 / Co(t) dt (14)
0

In the case of unequal blood:brain partition coefficients for
the two tissues comprising the mixture, i.8;, # o, A is un- The parmeterg; and ds are then estimated by defining the
knowna priori owing to the fact that it depends on the value ofector (see (15) shown at the bottom of the page) the matrix
wy, Which is to be estimated. Hence the least squares estimat{®@e (16), shown at the bottom of the page) and solving the linear
procedure outlined in the previous section must be modifieig¢ast squares problem as in the previous sections, i.e.,
Rather than introduce nonlinear constraints, we chose to imple- )
ment an iterative procedure that starts with an initial estimate of =16, 6;]%=X"HX)"'X"Hy. (17)
A (the mean of\; and),), performs the least squares estimation
of the parameters to produce new estimates,cind), and re-
peats until either the percentage change in successive estimbteS )
of X is below a prespecified tolerance, or a maximum numbEHNCoON
of iterations is reached. Physiological constraints are imposednaccuracies in the measured input function, including delay
only after convergence of. As implemented, the tolerance forbetween the tracer appearance time in the brain and that at the
change in estimates afwas set at 0.5%, and a maximum of terarterial sampling site as well as dispersion of the measured func-
iterations were used. tion are well known to lead to systematic errors in rCBF determi-

orrection for Delay and Dispersion in the Measured Input

—/:l/Och,(t)dth /:l/oT/Ot{—q(s)+Xc,,,(s)}dsdth /:I/OTcay(t)dth

- thn T tn pI pt _ tn pT
—/ / Ci(t) dt dT / //{—Ci(s)—i-)\Ca(s)}dsdth / / Co(t) dtdT
sn Y0 sn 0O JO s, JO

X (10)
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nations (see, e.g., [22] and [23]). Of the strategies developeddo each fixedAt¢ the linear least squares problem is solved
take these factors into account, the multilinear minimization apnd resultant weighted residual sum of squares determined. The
proach for simultaneous estimation of input function delay andlue of At for which the residual sum of squares is minimum
dispersion [24] is particularly suited to adaptation for use witls chosen, and the best parameter estimates are those corre-
the current estimation procedures. Briefly, with this approadponding to the choseft.

the dispersion of the measured input functidft), is approxi- When white matter blood flow is known inclusion of the delay
mated by a monoexponential function, i.e., and dispersion of the input function in the estimation of gray
matter and weighted-average blood flow is accomplished by
d(t) = 1 o=t/ (18) computing [see (21), shown at the bottom of the previous page]
T and solving the linear least squares problem as in the previous
wherer is the time constant of the dispersion, and a delay 8§ct|ons, €
length At is taken into account by shifting the time scale of of T, T loTy
the measured input functiof,,(¢), so that O=[60 45 Aul”=X"HX)"X"Hy (22)

where y is given in (15). In this case

Co(t) = Cp(t+ At) + 7 L Co(t+ At). (19)

dt
. . AL
Substituting (19) into (6) yields Fr=M0 - < A2> . (23)
Ci(T) 6, is given by (13); is the smaller (real) root o‘f927 — AT+
2
_ _91/ £)dt — 92/ / s) dsdt 45 = 0, andF is the larger root of2 — 447 + Ad>7s = 0.
0
lll. SIMULATION STUDIES
+ 705C, (T + At) + (03 + 76.4) / Co(t + At) dt ] ) ]
0 Computer simulations were performed with a range of gray
matter blood flows, relative tissue compositions, and noise
+ 94/0 /0 Cm(s + At) ds dt (20) levels in the tissue measurements in order to determine the bias

and variance of the estimates of gray matter and weighted-av-
whered; throughd, are defined in (7). Multilinear minimiza- erage blood flow. An input function from the literature was
tion consists of considering a range of possible valuer used [7]; it represents the activity, corrected for radioactive

/,:C( dt+< )///{ Ci(s) + ACa(s)} ds dt dT

y= (15)

/ Ci(t dt+<F2>///{ Cy(s) + NCo(s)} ds dt dT
_/Sjl/oTCi(t)dthJr(f—j) /Sjl/OT/Ot{—Ci(s)+)\C,,,(s)}dsdth /Sltl/OTC,,,(t)dth

X = : : (16)

tn T j28 tn pT pt B tn T
_/ / C,;(t)dth—i—()\—)/ //{—C’i(s)—i-)\Ca(s)}dsdth / / C,(t) dt dT
sp JO 2 sn, JO JO Sy JO

// dth+< )///{ Ci(8)+XCpm(s)} ds dt AT / Con(t+At) dt // Co(t+At) dt dT
[ cwaars(2) [ / T [ o [ o o ean

(21)
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A. Arterial Blood Activity Coefficient of Variation in Simulated Tissue Activity
100 -
80 60 +
o 60 g -
% a0 £ a0 s
© g |
20
3 201
0 o
0 1 2 3 4 0 , ' : ;
B. Tissue Activity 0.01 0.1 1 10 100
20 — Noise Proportionality Constant o
15 L Fig. 2. Average coefficient of variation (COV) of simulated tissue
- concentration in final four 30-s frames of data, i.e., 2—4 min after bolus
=10l injection of isotope, for different noise proportionality constamtsData are
25 for a mixed tissue comprised of 50% gray matter with= 80 ml/100 g/min
51 —e— White Matter andA; = 0.98, and 50% white matter with, = 20 ml/100 g/min and\, =
—a— Gray Matter 0.82; COV was similar in other mixed tissues.
0 —a— Mixed Tissue
4

_ ' nondecay-corrected tissue activity. Therefore, the variance of
Time {min) the decay corrected activity; ., is given by

Fig. 1. (A) Input function used in simulations, from [7]. (B) Simulated

noise-free concentration of!HO in a heterogeneous tissue that is comprised .

of 50% gray matter withF; = 80 ml/100 g/min and\; = 0.98, and 50% 2 o k

white matter withF, = 20 ml/100 g/min and\, = 0.82. Input function Ok—dc = Var ; Ci(t) dt

represents activity, corrected for radioactive decay of the isotope, in whole k—1
blood following intravenous bolus injection of JMO. Units of activity are " 7
arbitrarily scaled. k thot Ci(t)dt
=a Ci(t)dt | — ——|. (25)
thoa Jil Ci(t)e P dt

decay of the isotope, in whole blood following intravenous

bolus injection of 550 [Fig. 1(A)]. Tissue activity curves were pg can be seen from (25), the variance depends on the ab-
computed for white mattert = 20 ml/100 g/min) and gray gq|yte units ofC;(#), which derive from the units o€ ()
matter ¢ = 40, 50, 60, 80, 110, or 120 ml/100 g min), andiseq in the simulation. The relationship between the propor-
their weighted average determined,(= 0.05, 0.1, 0.2, 0.5, i5najity constanta and the coefficient of variation in the
0.8, 0.9, or 0.95) [Fig. 1(B)]. Blood:brain partition coefficientgjgs e ‘measurements used in the present study is illustrated
were those of water, i.e., 0.98 and 0.82 ml blood/g brain fgg £ig 2 Al programs were written in Matlab Version 5.3.1
gray and white matter, respect.lvely [21]. The PET scamninghe MathWorks, Inc., Natick, MA) and run on a personal
schedule was assumed to consist of 12 10-s scans followed B nyter (Dell 410 workstation with dual 400-MHz Pentium
four 30-s scans for a total scanning time of 4 min. Total t'SSLI'Pprocessors, Dell Computer, Round Rock, TX). The systems
activity was integrated over each scan interval. Pseudorandgfigterential equations were solved with fourth and fifth
noise was generated from a zero-mean Gaussian distribuiper Runge-Kutta formulas [26]. Integrals of the simulated
to simulate the Poisson noise of counting statistics. Althoughe o red tissue concentrations were computed by interpolating
Poisson statistics strictly apply only to sinogram data, and thigyeen measurements by the method of weighted overlapping
noise model (with variance scaled appropriately for the numBeL 5145 [27]. Linear least squares estimations were conducted
of resolution elements) applies in reconstructed data only tQ,a yata integrated from zero timey(= 0, (9)—(10), (15)~(16))
uniform disc of activity [25], it was used in the simulations tQ,n4 on data integrated over each scan intefval = t_,).
give an initial indication of the pgrformance of the alg.orithmsrhe weighting matrixH for the linear estimations of (9)~(10)
Assuming perfect decay correction, the Thus the noise mogels the diagonal matrix of inverses of the simulated tissue
used WaS,GaUSQS'a” with variance in the nondecay-correcigdas rements: linear estimations of (15) and either (16) or (21)
tissue activity, o, assumed to be proportional to th§yere unweighted. In the estimations that employed (15)—(16),
number of counts collected in each scan interval, i.e., which assume a fixed value for blood flow in the white matter,
Iy was set at 90%, 100%, or 110% of its true value. To inves-
) B te g, te _a tigate the effect of total scanning time, additional simulations
k—ndc = Var / Ci(t)e™ "t dt| = O‘/ Ci(t)e™ dt  \yere performed in which scans terminated at 90, 120, 150,
fe fe o4y 180,210, or 240 s. The effect of heterogeneity of gray matter
(24) blood flows within a region of interest was investigated by
considering simulated tissue regions that included a mixture
whereg is the isotope decay constant forO (0.693/122.24  of two, three, or five gray matter compartments plus a white
s~ 1) and« is a proportionality constant.coefficient of variatiormatter compartment. The distributions of gray matter flows
for the decay-corrected tissue activity is the same as that of thed a mean of 80 ml/100 g/min and standard deviatior 2
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ml/100 g/min; the coefficient of variation of 25% was chosen Est Weighted Average rCBF in Heterogeneous Tissue
to produce a distribution similar to that of gray matter rCBF (4:1 gray:white rCBF ratio, a=0.1)
measured in the cat [18]. In this set of simulations gray matter
flows estimated by use of (15)—(16) were compared to the 10 +
mean gray matter blood flow for the distribution. Simulations 0+
were also performed with delays in the input function ranging
from —5 to +5 s and dispersion time constants of 0, 5, or 10

s. A total of 1000 simulations was performed for each set of
parameters, and the mean, variance, and mean square error for
each parameter estimate was computed. For comparison, gray -40 , ; , , ,
matter and weighted-average rCBF were also computed by a 0 02 04 06 08 1
modification of the least squares search algorithm of Koeppe
et al. [10] to allow for a weighted mixture of two tissues
(Appendix II). Additionally, weighted-average rCBF was
computed by three algorithms that are based on a homogeneous
tissue model: the least squares search algorithm [10] and the
linear least squares algorithm of Feeg al. [14], the latter

with and without a constraint fixing the tissue:blood partition
coefficient at the arithmetic mean of the gray and white matter . . ‘ , ,
values, i.e.A = 0.9 ml blood/g brain. o 02 04 06 o8 1

>

10 4
20 4

Bias (percent)

.30 1

w

N W H W
§ ’ 5
g 1 t

COV (percent)

o

IV. RESULTS 20

Errors in estimating weighted-average blood flbiin a het- 15 4
erogeneous region by use of the homogeneous and heteroge-
neous tissue models are shown in Figs. 3-5. The greatest biases
in F occured when a homogeneous tissue model with a fixed
partition coefficient was used in the estimation. With this model,
one of the greatest underestimationg‘oivas found when the . ¥ . -
two tissues in the mixture were equally weighted [Fig. 3(A)]; 0 02 04 06 08 1
note that in this particular case the error cannot be attributed Relative Weight Gray

to use of an incorrect value for the weighted-average partition
coefficient, as the true weighted-average value for this tissue LEGEND

was used. When both flow and patrtition coefficient were es- —x- LSS, 2K (Homogeneous Tissue)
timated with the homogeneous tissue model, the partition co- —o— CLLS, 1K (Homogeneous Tissue)
efficient was consistently underestimated. For example, at low —o—LLS, 2K (Homogeneous Tissue)
noise levels in a tissue comprised of 50% gray matter in which —a— CLLS, 3K (Heterogeneous Tissue)
blood flow was four times that of white matter the mean esti-
matedA was 0.79 mI/g, a bias 6f13%. The bias in¥’ was re- Fig. 3. Errors in estimation of weighted-average blood flow in heterogeneous
duced when both flow and partition coefficient were estimateidsues comprised of various fractions of gray matter. The two-parameter

[Figs. 3(A), 4(A), and 5(A)]. The degree of underestimation dfast squares search algorithm (LSS, 2K) [10], which estimBtesid A(«),
the one-parameter constrained linear least squares algorithm (CLLS, 1K)

F[Fig. 4(A)] and A (data nPt shown) incre.ased as Fhe ratio C[ 4], which estimates only" (squares), and the two-parameter unconstrained
gray matter blood flow}}, increased relative to white matteriinear least squares algorithm (LLS, 2K) [14], which estimates HGtand
blood flow, F5. Biases in estimated were negligible when A (diamonds), assume a homogeneous tissue model. The constrained linear
i het ’ it taken int tin the kineti | alst squares algorithm that estimates the three paramgters,, and w,
|s_sue elerogeneity was takenin 0 aCCOl_m Inthe _'ne IC MOEE]| s, 3K) assumes a heterogeneous tissue model (triangles). Blood flows in
[Figs. 3(A) and 4(A)], but the variance in the estimates wagay and white matter arE, = 80 ml/100 g/min and”, = 20 ml/100 g/min,
higher than when homogeneous tissue models were emp|og§@ectively; corresponding partition coefficients are = 0.98 andx. =
[Figs. 3(B) and 4(B)]. Overall, the root mean square (rms) errdr>
was smallest with the heterogeneous tissue model [Figs. 3(C)
and 4(C)]. Only at the highest noise level examined were avas about 500-fold higher than that of the constrained linear
rors in the estimates df' with the heterogeneous tissue moddkeast squares algorithms; the former algorithm required an av-
greater than those obtained by use of the homogeneous tisstage of 212 min to estimate flow in 1000 simulated regions
model (Fig. 5). compared to an average of 0.43 min for the linear methods. In
Errors in estimating gray matter blood flow; , by use of a most cases two to three iterations were required for the linear
heterogeneous tissue model are shown in Fig. 6. Total rms eratgorithms. Use of data integrated over each individual frame
was lowest, and fractional detection of heterogeneity in the reansistently produced better estimategpthan use of data in-
gion was highest, when the modified least squares search alggmgrated from zero time (Fig. 6). Higher ratios of gray matter
rithm was used. Computation time with this algorithm, howeveio white matter blood flow also produced better estimates, of

10 +

RMS Error (percent)




624 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 7, JULY 2001

Est Weighted Average rCBF in Heterogeneous Tissue Est Weighted Average rCBF in Heterogeneous Tissue
(Gray Matter Weight 50%, «=0.1) (Gray Matter Weight 50%, 4:1 gray:white rCBF ratio)
A. ,
10 +
10 + .
(5] = -10 +
‘é -20 1+ g T
& 304 o -30 +
-40 : : 4 o et -40 ¢ f t o
1 2 3 4 5 6 7 0.01 0.1 1 10 100

w
@

COV (percent)
8 8 &

COV (percent)

o

60 4
50 4
40 1
30 1
20 +
10 +
} . + t ; f 0 : } f !

1 2 3 4 5 6 7 0.01 0.1 1 10 100

gray:white rCBF ratio Noise Proportionality Constant o

N w
o (=]
! !
t t

>
O
RMS Error (percent) -

RMS Error (percent)

o

LEGEND LEGEND

—x— LSS, 2K (Homogeneous Tissue) —x- LSS, 2K (Homogeneous Tissue)
—n— CLLS, 1K (Homogeneous Tissue) —o— CLLS, 1K (Homogeneous Tissue)
—o— LLS, 2K (Homogeneous Tissue) —o— LLS, 2K (Homogeneous Tissue)
——CLLS, 3K (Heterogeneous Tissue) —a—CLLS, 3K (Heterogeneous Tissue)

Fig. 4. Errors in estimation of weighted-average blood flow in heterogeneopgy. 5.  Errors in estimation of weighted-average blood flow in heterogeneous
tissues comprised of 50% gray matter. The two-parameter least squares seghies comprised of 50% gray matter as a function of noise in the tissue
algorithm (LSS, 2K) [10], which estimate& and A(x), the one-parameter activity. The two-parameter least squares search algorithm (LSS, 2K) [10],
constrained linear least squares algorithm (CLLS, 1K) [14], which estimat@gich estimatesF’ and A(x), the one-parameter constrained linear least
only F' (squares), and the two-parameter unconstrained linear least squagsares algorithm (CLLS, 1K) [14], which estimates ofy(squares), and
algorithm (LLS, 2K) [14], which estimates bothi andX (diamonds), assume the two-parameter unconstrained linear least squares algorithm (LLS, 2K)
a homogeneous tissue model. The constrained linear least squares algorfiuy which estimates botf’ andA (diamonds), assume a homogeneous tissue
that estimates the three paramet&is f>, andw, (CLLS, 3K) assumes a model. The constrained linear least squares algorithm that estimates the three
heterogeneous tissue model (triangles). Blood flow in white mattéhis=  parameterd,, F;, andw, (CLLS, 3K) assumes a heterogeneous tissue model
20 ml/100 g/min; flows in gray matter are 40, 60, 80, or 120 ml/100 g/minriangles). Blood flows in gray and white matter dfe = 80 ml/100 g/min
Partition coefficients aré, = 0.98 and\. = 0.82 in gray and white matter, and F}, = 20 ml/200 g/min, respectively; corresponding partition coefficients
respectively. are\; = 0.98 and\, = 0.82.

(data not shown). In tissues that containe80% gray matter, least 20% gray matter (Fig. 7). The errors introduced by per-

dectection of heterogeneity was poor, and in tissues comprigeging the analysis with over- or underestimated valuek:of

of 50% gray matter the fractional rate of detection of hetergs greatest in those tissues that contain the highest proportion

geneity decreased by about 50% as noise levels increased (daighite matter (Fig. 7), but biases were smatl10%) in tis-

not shown). At all noise levels estimatesfafhad higher errors sues that contain at least 50% gray matter [see Fig. 7(A)]. Total

than did estimates af'. rms error in the estimate df; decreased with an increasing
When the linear estimation was further constrained by fixintpw ratio between gray and white matter (data not shown); at

the value of white matter flow, the estimates of gray matter flolew noise levels it was under10% for a tissue comprised of

were greatly improved, particularly in tissues that contain atjual weights gray and white matter whose flow ratios \e3e
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Est Gray Matter rCBF in Heterogeneous Tissue Est Gray Matter rCBF in Heterogeneous Tissue
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c B Fig. 7. Errors in estimation of gray matter blood flow with heterogeneous
% - 0 t t f t f tissue model in which white matter blood flow is known. The constrained linear
) 0 0.2 04 0.6 0.8 1 least squares algorithm with data integrated over each scanning frame was used
8 Relative Weight Gray and assumed values &% fixed at 100% (triangles), 110% (squares), or 90%
LEGEND (circles) of their true value. Two parameteFs, andw, , were estimated. Blood
Least Squares Search flows in gray and white matter a€, = 80 ml/100 g/min and*> = 20 m|/100
© q . g/min, respectively; corresponding partition coefficients afe = 0.98 and
—o—CLLS, 3K, data integrated over each frame N, = 0.82.
—— CLLS, 3K, data integrated from zero time

) o ) At the hightest noise level{ = 50), fractional detection of
Fig. 6. Errorsin estimation of gray matter blood flow in heterogeneous tISSL:ES . d d . IV 51%. 66%
comprised of various fractions of gray matter. The modified least squal ?terOgenelous tissue decreased to approxmate y 0, 0, Or
search algorithm (Appendix Il) (diamonds) is compared to the constrain€b% [see Fig. 8(D)] and total rms error increased to 69%, 65%,

linear least squares algorithm (CLLS) with data integrated over each scanngig5904 [see Fig. 8(C)] for tissues comprised of 90%, 50%, or
frame (squares) or integrated from the start of the experiment (triangles). ’ ’

o .
algorithms assume a heterogeneous tissue and estimate the three paran%% gr_ay matter, respectively. ) ) ]
F, F,, andw, . Blood flows in gray and white matter af§, = 80 ml/100 The influence of the total scanning time on the estimates of

g/min and F, = 20 ml/100 g/min, respectively; corresponding partitiongray matter flow in a heterogeneous tissue is shown in Fig. 9.
coefficients are\; = 0.98 and\; = 0.82. . . . .
Errors in the estimates are little changed by extending the total
scanning period from 2 to 4 min after intraveneous administra-
With increasing noise levels, total rms error in the estimate tbn of the tracer. In predominantly gray matter regions, how-
Iy increased and fractional detection of heterogeneous tisgwer, optimal detection of tissue heterogeneity, which is required
decreased (Fig. 8). At low noise levels & 0.1), total rms er- to obtain an estimate of gray matter flow, requires a total scan-
rors were 4%, 7%, or 17% for tissues comprised of 90%, 50%, mwing time of not less than 2.5-3 min.
20% gray matter, respectively [see Fig. 8(C)], and heterogeneityHeterogeneity in gray matter flow had little effect on errors
was detected in 100% of the simulated tissues [see Fig. 8(D)Jh estimation ofF; (Fig. 10) for the symmetric distributions
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Est Gray Matter rCBF in Heterogeneous Tissue
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. . N . Fig. 9. Errors in estimation of gray matter blood flow with heterogeneous
Fig. 8. Errors in estimation of gray matter blood flow with heterogeneog?§sue model in which white matter blood flow is known. The effects of

tissue model in ‘?’hiclh white hmattefr bIOOd.ﬂOC‘jN is knO\p]/n. The leect‘s Trminating the PET scanning process at various times between 90 s and 4 min
increasing noise levels are shown for a mixed tissue that is predominamify, gjown for a mixed tissue that is predominantly gray matter (90% gray,
white matter (20% gray, triangles), equal fractions of gray and white mat

kel I fracti d white matt dominant]
(50% gray, squares), or predominantly gray matter (90% gray, circles). T, cles), equal fractions gray and white matter (squares), or predominantly

. - ; ; : ite matter (20% gray, triangles). The constrained linear least squares
constrained linear least squares algorithm with data integrated over eattbrithm with data integrated over each scanning frame was Ugeejas
scanning frame was used with an assumed valuByofixed at 100% of its a4 a1 1009% of its true value. Two parameteFs, andw, , were estimated.
true value. Two parameters; andw,, were estimated. Blood flows in gray Blo

h f : od flows in gray and white matter af€, = 80 ml/100 g/min andFy; =
and white matter ard, = 80 mi/100 g/min andr, = 20 ml/100 g/min, 54 /100 g/min, respectively; corresponding partition coefficientsXare=

respectively; corresponding partition coefficients are = 0.98 andA, = 0.98 and\, = 0.82
0.82. ’ T

of gray matter flow considered. In tissues comprised of 50%
gray matter, heterogeneity of gray matter flow introduced onkimultaneously estimated by multilinear minimization, biases
a small additional bias compared to a region in which the gray the estimates of gray matter flow were largely eliminated
matter flow was uniform [see Fig. 10(A)]. Heterogeneity of grajsee Fig. 11(B)]. Estimation of four parameters rather than two,
matter flow had no effect on either the variance in the estimateswever, led to increases in the coefficients of variation of the
or the fractional detection of heterogeneity in the tissue aseatimates from 7%—8% to 9%—12%. In general, at all noise
whole [see Fig. 10(D)]. levels rms error in the estimates of gray matter flow were some-
Fig. 11 illustrates the biases introduced into the estimationwhat higher and fractional detection of heterogeneity somewhat
gray matter flow by delay and dispersion of the measured indotver when delay and dispersion of the input function were esti-
function relative to the true input function. When no correctionmated simultaneously with the estimationfafandw; (Fig. 12)
for delay and dispersion were made and only the two parametdran when the input function was assumed to have been fully
F; andw, estimated, large biases in the estimated gray matt@mrrected prior to the estimation and oty andw; were de-
flow resulted [see Fig. 11(A)]. When delay and dispersion wetermined (Fig. 8).
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Est Wt Avg Gray Matter rCBF in Heterogeneous Est Gray Matter rCBF in Heterogeneous Tissue
Tissue (including white matter and a mixture of (Gray Matter Weight 50%, 4:1 gray:white rCBF ratio, =0.1)
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the true input function. Delay due to timing errors between the measured and
true input function range from-5 s to+5 s, and the dispersion time constant
of the sampling systeny, is 0, 5, or 10 s. Tissue is 50% gray matter. The
heterogeneous tissue model, with white matter blood flow assumed to be
known, was used in the estimation. In the upper panel (A), no corrections for
delay and dispersion were made; two paramet€rsandw, , were estimated.
Errors in the input function resulted in large biases in the estimated gray matter
40 | : , : 4 flow; coefficients of variation in the estimates were 7%-8%. In the lower
001 0.1 1 10 100 panel (B), the four parameters, , wy, delay, andr were determined. Biases
Noise Proportionality Constant o in the estimates were removed, but the coefficients of variation in the estimates
increased to 9%-12%. The constrained linear least squares algorithm with data
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{LEGEND integrated over each scanning frame was ugedwas fixed at 100% of its
x; i matter ggmggﬁmgms | true value. Blood flows in gray and white matter d@fe = 80 ml/100 g/min
_o— 3 gray matter compartments i and F> = 20 ml/100 g/min, respectively; corresponding partition coefficients
—o— 5 gray matter compartments 4‘ are); = 0.98 and\, = 0.82.

Fig. 10. Errors in estimation of weighted-average gray matter blood flow, . . . .
with heterogeneous tissue model in which white matter blood flow is knowwhlte matter tissue leading to the well-known partial volume

The effects of heterogeneity of flow in the gray matter are shown. The tofaffect. Because blood flow in some cortical regions may be as
tissue mixture is comprised of 50% gray matter, 50% white matter. Graych as sixfold higher than in neighboring white matter [18],

matter blood flows are either homogeneous (1 gray matter compartment, . . . : .
Fi = 80 mi/100 g/min), or a heterogeneous mixture of two, three, or ﬁ\‘f@/‘elghted-average blood flow in the mixed tissue underestimates

compartments distributed such that the weighted-average gray matter bigh@y matter flow. Furthermore, when the kinetic model used
flow is 80 ml/100 g/min, and the coefficient of variation of the distribution igg estimate flow fails to take into account the tissue hetero-

~25%. The two compartment gray matter distribution contains 50% tissue . . . . .
with a flow of 60 mI/100 g/min, and 50% tissue with a flow of 100 m|/100 .enelty., Welg_htEd'aV?rage ﬂ_OW 'tself_ is underestimated. Pre-
g/min. The three compartment gray matter distribution is comprised of 22¢40uUs simulation studies, which considered the effects of het-
tissue with a flow of 50 ml/100 g/min, 56% tissue with a flow of 80 m|/100erogeneity but not noise in the data, found that the underestima-
g/min, and 22% tissue with a flow of 110 ml/100 g/min. The five-compartme : !
distribution is comprised of 8%, 20%, 44%, 20%, and 8% tissues with ﬂorﬁ/on of weighted-average flow was small [2], [4], [], [10]_[1_2]'
rates of 40, 60, 80, 100, and 120 ml/100 g/min, respectively. The constraifdd]—[17]. In the present study, we have expanded these inves-
linear least squares algorithm with data integrated over each scanning fraf@gtions to include the influence of noise in the data, and con-
was used;F, was fixed at 100% of its true value. Two parametdrs,and . . .
wq, were estimated. Blood flow in white matter 55 = 20 ml/100 g/min; f'rme_d that. errors in welghted-ave_rage flow te!’ld to be small.
partition coefficients in gray and white matter ave = 0.98 and\, = 0.82, Thisis partially due to the characteristics of the tissue:blood par-
respectively. tition coefficients used in the current study, i.e., those of water.
When a heterogeneous tissue that has two compartments with
efflux rate constant§F; /A1) and(F>/A2) is approximated by
a homogeneous tissue with an efflux rate constag#gt ), in

Many gray matter structures in the human brain are smakneral the greater the separation in the efflux rate constants
compared to the spatial resolution of even the most advandedhe mixed tissue, the greater the errors due to assuming a
PET scanners currently in use. Particularly in cortical regionsingle efflux rate constant. For water, flow ratios of 4:1 resultin
where the gray matter forms a winding band only 2—3 mm thicln efflux rate constant ratio of 3.3:%((4/0.98)/(1/0.82)). For

measurements of activity unavoidably include neighboringracers that have partition coefficients in gray matter less than

V. DISCUSSION
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Est Gray Matter rCBF in Heterogeneous Tissue
(4:1 gray:white rCBF ratio, At=5 sec, 7=10 sec)

A
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studies [20]. When the tissue heterogeneity model was used,
weighted-average flow estimates were unbiased, but the inclu-
sion of an additional parameter in the model led to somewhat

2 0 higher variances in the estimates than when a homogeneous
8 20 tissue model was used.
g 0 Use of a kinetic model that assumes a homogeneous tissue,
8 though it does not result in excessive biases in estimates of
-20 4 y ‘ ; ‘ weighted-average blood flow, does not permit the estimation of
0.01 0.1 1 10 100 g : .
B. flowinthe gray matter. For this task a heterogeneous tissue model
80 is required, and the simplest model of a heterogeneous tissue as
g 60 a weighted mixture of two homogeneous tissues was chosen.
é 40 This model has been previously used to investigate the errors in
< 20 weighted-average flow in a mixed tissue estimated with several
3 0. , : , { algorithms that assume a homogeneous tissue model, and reports
001 01 1 10 100 of H3>O PET studies in monkeys [28] and in humans [29] have

shown that the model can be used to estimate gray matter flow
100 in large regions of interest with nonlinear least squares fitting.
We have found that it is difficult to determine the parameters

C.

%‘l jg of the heterogeneous tissue model with nonlinear least squares

u%’ 20 algorithms, i.e., the final estimates are heavily dependent on

2 o0 : ' : i initial values of the parameters, and often the algorithms do not

€ 001 01 A1 10 100 converge; this is probably due to the low sensitivity of total tissue

D. activity to changes in white matter flow in regions that contain
100 a significant fraction of gray matter. Additionally, nonlinear

least squares algorithms require long computation times. In the

80 . .

present study, we sought to avoid these problems by working
60 with linear least squares algorithms. The linear least squares
40 | ; : , , algorithms used in this study were found to be approximately

500 times faster than the least squares search algorithm [10].
Use of the constrained linear least squares algorithm to estimate
LEGEND o Wt Gray=20% three parameters, however, resulted in biased estimates of gray
o Wt Gray=50% matter flow; the biases were larger intissues that contained larger
—o— Wt Gray=90% fractions of white matter and in tissues with lower ratios of gray
matter to white matter blood flow. The biases in the estimates
Fio 12, Erors i estimation of tor blood flow duc fo g ~of gray matter flow were almost entirely eliminated when the
2 s St o ey e o0 e K e Sfitonal constraint fxing the value of white matter blood flow
measured input function. Delay due to timing errors between the measured ¥f@s included in the linear least squares estimation.
B e i Srten T e s v esomransy s The heterogenaity morel used i the curtent study assumes
gﬁatter (200/5 grgy, ¥rianglés), eq.ual fractions of gray and vehite matter (go% gla?m()gene'ty of flow in the gray rnatter.component ofthe mIXFj'd
squares), or predominantly gray matter (90% gray, circles). The heterogeneli§sue. Yet gray matter flows in brain are themselves quite
ti'SSUE model,with whi}e matter blood flow as;umed to beo/knc])(vytn,twas USIEd \Nﬁ@terogeneous_ In the unanesthetized cat, for examp|e, except
gg’ggi{;ﬁ;’;’fnegsﬁg;aéfdnV?ffi/t:r:g;ﬁgza‘ggsixgg aoe ‘éfmi'nsa::ﬂ;;’i“e' for one outlying small structure, gray matter rCBF ranged from
20 ml/100 g/min, respectively; corresponding partition coefficientshare= ~ approximately 2—6 times (mean 4.1) that of white matter; the
0.98 and\, = 0.82. Compare with Fig. 8 in which there were no delays andtgndard deviation of the distribution wa®.26 times the mean
dispersions of the input function. [18]. When various symmetric gray matter rCBF distributions
with these characteristics were simulated, good estimates of
or equal to those in white matter, the effects of assuming a heeighted-average gray matter flow were obtained despite the
mogeneous tissue model in a heterogeneous tissue are greatedel assumption of homogeneity of gray matter flow. Accuracy
A second factor ameliorating the impact of heterogeneity on thé the estimates remains to be determined if a specific tissue
estimates of weighted-average flow is the high degree of caegion is found in which gray matter flow heterogeneity follows
relation between the estimates Bfand \; their simultaneous another distribution, e.g., skewed, with a larger variance, or with
estimation leads to smaller errors in the estimated weighted-avgreater overlap with white matter flow.
erage flow than when is fixed, even when it is fixed at its  The rapid computational speed of the linear algorithms com-
true weighted-average value in the mixed tissue. We also giared with their nonlinear counterparts suggests that these algo-
served that the values afestimated by use of a homogeneousthmsmaybesuitableforapplicationatthe pixellevel. Thehighest
tissue model were smaller than those derived on the basisnoise level examined in the present study corresponded to a coef-
the water content of the tissues; our estimates were consistiggient of variation in the final 30-s scans of approximately 65%,
with the estimates of whole brain partition coefficient in humawhich is on the order of the noise levels one might expect in un-

0.01 0.1 1 10 100
Noise Proportionality Constant o

Detection of Heterogeneous
Tissue (percent)
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smoothed pixel level data [30]. Atthis noise level the coefficientghich, after rearrangement, becomes
ofvariation of estimates of both weighted average and gray matter

flowreached40%—60%, andthe detectionofheterogeneityfelloff / w, I} woa Iy dc;
by as much as 50%. The high degree of variability in the estimates <)\—1> Ca(t) + <—> Cia(t) =

-t FC,(t)
2
callsfor cautionin applying all blood flow calculation methods to (A.4)
unsmoothed pixel data, and suggests that applicationtoless noisy

region of interest data may be more appropriate. _ . .
g : y pproprt wherel = w1 Fy + woI% is the weighted-average blood flow

The present study was based on the use of atracer thatis freel . . . .
diffusible across the blood brain barrier. Although partitio?0 %e mixed tissue. A second differentiation of (A.2) produces

coefficients for water were used in the simulations in this study

because BFO is the most-widely used PET blood flow tracer & = w, &*Ci + 1wy &Gy - _ <w1F1> dCi
and is generally treated as freely diffusible, the results would be ~ dt? dt? dt? AL dt
expectedtoapplytootherfreely diffusible blood flowtracers such B <w2F2> dCio cha
as [F*O]butanol [31], [ C]butanol [32], or [¥F]fluoromethane Ao dt dt
[1_33] Wit.h approprigtely substituted partition coefficients. Pos- (w2 wy F2
sible diffusion limitations of these tracers were beyond the = < 22 )Ci ®) + <T> Cia ()
. 1 2
scope of the current study. The present study has also omitted w F w2 dC
consideration of intravascular activity included in the PET data - < -l 202 ) Co(t)y+ F—=.  (A5)
and its effect on estimation of rCBF. Additionally, a tracer thatis AL A dt
freely diffusible across the blood-brain barrier may also diffuse o ) »
from brain regions that have a high concentration to regiomg/Pstituting the identities
with a lower concentration during the course of the experimental
period. This effect was not considered in the present study and is <F_12> _ <ﬂ ﬂ) <ﬂ) _ <F1F2>
the subject of further investigation. A? A X/ \ M A1 g
and
APPENDIX | <F_22> _ <ﬂ N Q) <§> B <F1F2>
DERIVATION OF EQUATION FOR MEASUREMENT OFCEREBRAL A3 TN A A2 A1 A2
BLOOD FLOW IN A HETEROGENEOUSTISSUE
Assume the model for distribution of a freely diffusible tracelNt® (A-5) we obtain
into a mixed tissue comprised of two homogeneous tissues is2
given by the set of equations: d_C;
dt
dOZ F - F1 F2 w1F1 w2F2
() s+ micuy - (R ) (50 cs+ (57) cato)
4 Jay o
d;ﬂ =- <§—j) Cia(t) + FoCu(t) (A1) - </\1)\2> [w1Cir(t) + w2Cia(t)]
w1F12 w2F22 — dCa

where < AL + A2 ) Calt) + dt (A6)

C;1 andC;>,  concentrations of the tracer in tissues 1 and 2;
Fyandf;  blood flow per unit mass of tissues 1 and 2; Finally, substituting (A.2) and (A.4) into (A.6) and simplifying
Arandh, respective tissue:blood partition coefficientgroduces
for the tracer and tissues in question;
C, concentration of tracer in the arterial blood. d2C; F F)\ dC; FLF,
The concentration of tracer in the mixed tissue is the weighted o <)\—1 + )\—2> prai <)\1)\2) Ci(t)
sum of the concentrations in the two homogeneous tissues com-
prising the mixture, i.e., + Fd;“ + <§1f2
172

) ACa(t) (A7)

whereX = wy A1 + w2 A2 is the weighted-average blood : brain

partition coefficient in the mixed tissue. Noting the initial con-
ditions thatC, (t) andC;(t), as well as their first derivatives, are
zero at = 0, twice integrating (A.7) yields the integral equation

w; andwe = 1 — w; are the relative tissue weights. Differenti
ating (A.2) we have

dOZ dOzl dOzQ T T pt
= w1 — w2
dt dt - dt " Ci(T) = _91/ Ci(t) dt — 92/ / Ci(s)dsdt
= ()t - (M22) at + £ y ey
1 2

T T pt
(A.3) + 63 /0 Co(t) dt + 04 /0 /0 Co(s)dsdt (A.8)
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where for a range of values ofgf ) that covers the expected range of
131 F values of(F/A) in the tissue. Then, for each region or pixel,
=)+ () i _
AL Ao for each value of;"’, the linear least squares problgm=
. P\ [ F X(@9U) is solved, where
=) (5) |
— . 11 to 1t
0 = w1l +weky = F v = Cu(t) dt Cult)dt - it dt
- () (8) () (), TR
AL A2 AL Ao ) (A.12)
(Ag) ) [ rte + 5
X = / / Col(s)e " t=2) ds dt
tg 0

APPENDIX I
ADAPTATION OF THE LEAST SQUARES SEARCH ALGORITHM tz gt 1D (t—s)
FOR USEWITH A HETEROGENEOUSTISSUE MODEL o Ca(s)e™™ dsdt -
1

The least squares search algorithm [10] is based on a homoge-

neous tissue model which assumes that the tissue concentration bt 1D (s
can be described by (2), namely /tnl/o Cals)e™ (=) ds dt] (A.13)
r and
CAT) = F / )= (FIN@=1) gy (A.10) | )
0 9 = [Kﬂ . (A.14)

where

Ci  tissue concentration (_)f tracer, The index; is chosen for whichly — X6 ||2 is minimized.

Co  arterial input function; The estimates of and A are then given b

F blood flow per unit weight tissue; ! gV y

A brain:blood partition coefficient for the tracer and

: . . . i . KW
_ tissue in question. _ _ = K£J> and )= L_ |, (A.15)
Given a series of measurements of tissue concentration accu- kéj)

mulated over the intervalgo, 1], [t1, 2], . - - [tn—1,tr], @and an
arterial input function(’,,(¢), the algorithm precomputes the in- - To modify this algorithm to allow for a heterogeneous tissue,

tegrals we assume that the tissue is comprised of a weighted sum of two
topt i homogeneous tissues so that
/ / C'a(s)e_ké =) gs dt g
tg 4O T
t t . _ _
/ / Cal)e™ " =) dg it ... Ci(T) = wiFy / Ca(t)e” /AT gy
t1 JO 0
oot o) T
/ / C'a(s)c_k2 (t=5) ds dt (A.11) + (1 —w)F / Ca(t)e—(FZ/)\Z)(T—t) dt (A.16)
tn-1/0 0

- t1 k t1 pt (6
/ Ci(t) dt — Aok / / Col(s)e™ =9 ds gt
to to YO

2 to pt )
/ Ci(t) dt — AokS / / O, ()"0 g g
ty t; JO (A.18)

tn tn: t '
[ awmar—and [7 [ e dsar
i 2SN | tn_1 Y0 u
— () t1 pt ) (k) t1 pt .
ks / / Co(s)e ™ (=) ds dt — Aoy / / Co(s)e™ =9 gs gt
to /O tg YO

. to pt ; ) to pt )
X0 = | Mk§) / / Cals)e™" =) dg gt — Aok / / Ca(s)e™” 0= ds d (A.19)
ty JO ty JO

o j e R |
)\1]@5]) / / C'a(s)e*ké (=9 gs dt — )\ngk) / / Ca(g)@*kéw(tﬂ) ds dt
- ty—1/0 tn_1/0

and
fur) — [w?’ﬂ . (A.19)



SCHMIDT AND SOKOLOFF: REGIONAL CEREBRAL BLOOD FLOW IN HETEROGENEOUS TISSUES BY PET

where [9]
Fy andrl, blood flows in Tissues 1 and 2;
A andX, corresponding brain:blood partition coeffi- [10]
cients;
wy fractional weight of Tissue 1.

Let ko, andky, be the efflux rate constants from Tissues 1 and 2, ;
respectively, i.e.kz, = (F1 /A1) andka, = (F2/A2). Inserting
these constants into (A.16) we obtain

. [12]
CiT) = wy | Akoa / Co(t)e FealT=0) gy
0

. [13]
— Aok / Co(t)e 2T gt
0

(14]

T
+ Aokay / Co(t)e o=t gt (A.17)
0

We assume thak; and A. are known. The algorithm begins [15]
by precomputing the integrals, as in (A.11). Then, for each
region or pixel, for each pair of value{kéj), kék)) the linear
least squares problem = X(*)gG*) s solved, where [see
(A.18)—(A.20) at the bottom of the previous page]. Indexes [16]
andk are chosen for whicljly — X% 9U*)||2 is minimized.
Then the estimates df;, F5, andw; are given by

(17]

Fr=MED, B=xkY, and @, =690, (A21)

[18]
Note that because we assume that> F, only those indexes
for which Alkgj) > /\ngk) need to be examined.
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